Custom Search

Sunday, December 30, 2007

18W Audio Amplifier

18W Audio Amplifier
________________________________________
High Quality very simple unit
No need for a preamplifier
________________________________________

Circuit diagram:
Amplifier parts:
P1_____________22K Log. Potentiometer (Dual-gang for stereo)

R1______________1K 1/4W Resistor
R2______________4K7 1/4W Resistor
R3____________100R 1/4W Resistor
R4______________4K7 1/4W Resistor
R5_____________82K 1/4W Resistor
R6_____________10R 1/2W Resistor
R7_______________R22 4W Resistor (wirewound)
R8______________1K 1/2W Trimmer Cermet (optional)

C1____________470nF 63V Polyester Capacitor
C2,C5_________100µF 3V Tantalum bead Capacitors
C3,C4_________470µF 25V Electrolytic Capacitors
C6____________100nF 63V Polyester Capacitor
D1___________1N4148 75V 150mA Diode

IC1________TLE2141C Low noise, high voltage, high slew-rate Op-amp
Q1____________BC182 50V 100mA NPN Transistor
Q2____________BC212 50V 100mA PNP Transistor
Q3___________TIP42A 60V 6A PNP Transistor
Q4___________TIP41A 60V 6A NPN Transistor

J1______________RCA audio input socket


Power supply parts:
R9______________2K2 1/4W Resistor
C7,C8________4700µF 25V Electrolytic Capacitors
D2_____________100V 4A Diode bridge
D3_____________5mm. Red LED
T1_____________220V Primary, 15 + 15V Secondary, 50VA Mains transformer
PL1____________Male Mains plug
SW1____________SPST Mains switch

________________________________________
Notes:
" Can be directly connected to CD players, tuners and tape recorders.
" Do not exceed 23 + 23V supply.
" Q3 and Q4 must be mounted on heatsink.
" D1 must be in thermal contact with Q1.
" Quiescent current (best measured with an Avo-meter in series with Q3 Emitter) is not critical.
" Adjust R3 to read a current between 20 to 30 mA with no input signal.
" To facilitate quiescent current setting add R8 (optional).
" A correct grounding is very important to eliminate hum and ground loops. Connect to the same point the ground sides of J1, P1, C2, C3 & C4. Connect C6 to the output ground.
" Then connect separately the input and output grounds to the power supply ground.
________________________________________

Technical data:
Output power: 18 Watt RMS @ 8 Ohm (1KHz sine wave)
Sensitivity: 150mV input for 18W output
Frequency response: 30Hz to 20KHz -1dB
Total harmonic distortion @ 1KHz: 0.1W 0.02% 1W 0.01% 5W 0.01% 10W 0.03%
Total harmonic distortion @10KHz: 0.1W 0.04% 1W 0.05% 5W 0.06% 10W 0.15%
Unconditionally stable on capacitive loads
________________________________________

Modular Audio Preamplifier and Tone Control

Modular Audio Preamplifier High Quality, Discrete Components Design Input and Tone Control Modules

Main Module circuit diagram:
Parts:
R1_______________1K5 1/4W Resistor
R2_____________220K 1/4W Resistor
R3______________18K 1/4W Resistor
R4_____________330R 1/4W Resistor
R5______________39K 1/4W Resistor
R6______________56R 1/4W Resistor
R7,R10__________10K 1/4W Resistors
R8______________33K 1/4W Resistor
R9_____________150R 1/4W Resistor
R11_____________ 6K8 1/4W Resistor
R12,R13________100R 1/4W Resistors
R14____________100K 1/4W Resistor

C1_____________220nF 63V Polyester Capacitor
C2_____________220pF 63V Polystyrene or ceramic Capacitor
C3_______________1nF 63V Polyester or ceramic Capacitor
C4,C7___________47µF 50V Electrolytic Capacitors
C5,C6__________100µF 50V Electrolytic Capacitors

Q1,Q2_________BC550C 45V 100mA Low noise High gain NPN Transistors
Q3____________BC556 65V 100mA PNP Transistor
Q4____________BC546 65V 100mA NPN Transistor

________________________________________
Tone Control Module circuit diagram:
Parts:
R1,R7___________47K 1/4W Resistors
R2_____________220K 1/4W Resistor
R3______________18K 1/4W Resistor
R4_____________330R 1/4W Resistor
R5______________39K 1/4W Resistor
R6______________56R 1/4W Resistor
R8_____________150R 1/4W Resistor
R9______________10K 1/4W Resistor
R10,R16__________6K8 1/4W Resistors
R11,R12________100R 1/4W Resistors
R13____________100K 1/4W Resistor
R14______________1K5 1/4W Resistor
R15,R21,R22______4K7 1/4W Resistors
R17,R24,R26______8K2 1/4W Resistors
R18______________3K3 1/4W Resistor
R19______________1K 1/4W Resistor
R20____________470R 1/4W Resistor
R23,R25_________12K 1/4W Resistors
R27,R28__________4K7 1/4W Resistors

C1_____________220nF 63V Polyester Capacitor
C2_______________1nF 63V Polyester or ceramic Capacitor
C3,C6___________47µF 50V Electrolytic Capacitors
C4,C5__________100µF 50V Electrolytic Capacitors
C7______________10nF 63V Polyester Capacitor
C8,C9__________100nF 63V Polyester Capacitors

Q1,Q2_________BC550C 45V 100mA Low noise High gain NPN Transistors
Q3____________BC556 65V 100mA PNP Transistor
Q4____________BC546 65V 100mA NPN Transistor
SW1,SW2_______2 poles 6 ways Rotary Switches


Simpler, alternative Tone Control parts:
P1______________22K Linear Potentiometer
P2______________47K Linear Potentiometer

R29,R30________470R 1/4W Resistors
R31,R32__________4K7 1/4W Resistors

C10_____________10nF 63V Polyester Capacitor
C11,C12________100nF 63V Polyester Capacitors


________________________________________
Comments:
To complement the 60 Watt MosFet Audio Amplifier a High Quality Preamplifier design was necessary. A discrete components topology, using + and - 24V supply rails was chosen, keeping the transistor count to the minimum, but still allowing low noise, very low distortion and high input overload margin. Obviously, the modules forming this preamplifier can be used in different combinations and drive different power amplifiers, provided the following stages present a reasonably high input impedance (i.e. higher than 10KOhm).
Main Module:
If a Tone Control facility is not needed, the Preamplifier will be formed by the Main Module only. Its input will be connected to some sort of changeover switch, in order to allow several audio reproduction devices to be connected, e.g. CD player, Tuner, Tape Recorder, iPod, MiniDisc etc. The total amount and type of inputs is left to the choice of the home constructor.The output of the Main Module will be connected to a 22K Log. potentiometer (dual gang if a stereo preamp was planned). The central and ground leads of this potentiometer must be connected to the power amplifier input.
Tone Control Module:
This Module employs an unusual topology, still maintaining the basic op-amp circuitry of the Main Module with a few changes in resistor values.A special feature of this circuit is the use of six ways switches instead of the more common potentiometers: in this way, precise "tone flat" setting, or preset dB steps in bass and treble boost or cut can be obtained. Tone Control switches also allow a more precise channel matching when a stereo configuration is used, avoiding the frequent poor alignment accuracy presented by common ganged potentiometers.Six ways (two poles for stereo) rotary switches were chosen for this purpose as easily available. This dictated the unusual "asymmetrical" configuration of three positions for boost, one for flat and two for cut. This choice was based on the fact that tone controls are used in practice more for frequency boosting than for cutting purposes. In any case, +5dB +10dB and +15dB of bass boost and -3dB and -10dB of bass cut were provided. Treble boost was also set to +5dB +10dB and +15dB and treble cut to -3.5dB and -9dB.
Those wishing to use common potentiometers in the usual way for Tone Controls may use the circuit shown enclosed in the dashed box (bottom-right of the Tone Control Module circuit diagram) to replace switched controls.
The Tone Control Module should usually be placed after the Main Input Module, and the volume control inserted between the Tone Control Module output and the power amplifier input. Alternatively, the volume control can also be placed between Main Input Module and Tone Control Module, at will. Furthermore, the position of these two modules can be also interchanged.
Power supply:
The preamplifier must be feed by a dual-rail, +24 and -24V 50mA dc power supply. This is easily achieved by using a 48V 3VA center-tapped mains transformer, a 100V 1A bridge rectifier and a couple of 2200µF 50V smoothing capacitors. To these components two 24V IC regulators must be added: a 7824 (or 78L24) for the positive rail and a 7924 (or 79L24) for the negative one.The diagram of such a power supply is the same of that used in the Headphone Amplifier, but the voltages of the secondary winding of the transformer, smoothing capacitors and IC regulators must be uprated. Alternatively, the dc voltage can be directly derived from the dc supply rails of the power amplifier, provided that both 24V regulators are added.
Note:
" If this preamplifier is used as a separate, stand-alone device, thus requiring a cable connection to the power amplifier, some kind of output short-circuit protection is needed, due to possible shorts caused by incorrect plugging. The simplest solution is to wire a 3K3 1/4W resistor in series to the output capacitor of the last module (i.e. the module having its output connected to the preamp main output socket).
________________________________________
Technical data:
Main Module Input sensitivity: 250mV RMS for 1V RMS output
Tone Control Module Input sensitivity: 1V RMS for 1V RMS output
Maximum output voltage: 13.4V RMS into 100K load, 11.3V RMS into 22K load, 8.8V RMS into 10K load
Frequency response: flat from 20Hz to 20KHz
Total harmonic distortion @ 1KHz: 1V RMS 0.002% 5V RMS 0.003% 7V RMS 0.003%
Total harmonic distortion @10KHz: 1V RMS 0.003% 5V RMS 0.008% 7V RMS 0.01%

Linear FM 30Watt

Linear FM 30Watt

A amplifier of medium force RF for the FM, is always essential for the amateur that wants it strengthens some small transmitter, that likely it has already it manufactured! The present circuit can give force 25-30W, with control no bigger than 4-5 W.
As it appears in the analytic drawing, the amplifier is manufactured with the transistor TR1 of type ?LY89 of Phillips. The transistor this is specifically drawn for operation in frequencies up to 175?hz, with very good results. His special characteristics appear below:
· Tendency of operation: 18V
· Current of Collector: max 3 5th
· Gain: max 10dB
· Force of Expense: 25-30 W
· Output (order C): > 60%
Variable capacitors C1, C2, with inductor L1, constitute the coordinated circuit that adapts the exit of our transmitter in this amplifier RF. the circuit has been calculated suitably, so that it covers all band the FM with the biggest possible output. Inductor RFC1 polarize the transistor, so as to it works in order C that is to say with the biggest output. Inductor L2 in the collector of TR1, constitutes the charge of amplifier, while RFC2 prevents the RF signals escape in the line of catering. Capacitor C2 and resistance R1, protect the circuit from auto polarize.
The coordinated circuit of expense that is constituted by inductor L2 and variable capacitors C3, C4, adapts the exit of amplifier RF with the next stage that can be some amplifier RF of high force (> 100W) or a aerial.
MANUFACTURE
The manufacture of amplifier is very simple and easy. Puncture the point PCB that will pass the nutshell of TR1. Stick the capacitors, variable, the resistance, the RF tsok and the inductors. Finally you stick the TR1, being careful not overheats at the welding and blend pin his. Clean finally PCB from the residues of soldering. Make a very careful control for by any chance errors, omissions, short-circuits, chills you stick also anything other that could you make wonder why does not work the amplifier.
PARTS
C1, C2, C3, C4 = 10 ? 80pF
C 5 = 10nF
C6 = 1000pF
C7 = 100nF
C8 = 2200mF/35V
L1 = 1 coil with diameter of 10 mms, 1 mm
L2 = 7 coils with diameter of 10 mms, 0,8 mm
L3 = 3 coils with diameter of 10 mms, 1 mm
TR1 = BLY89
RFC = RF tsok
If all they are it includes, you connect the exit of your transmitter (3-4W) in the entry of amplifier. The exit of amplifier him you will connect in some charge (dummy load) or in the aerial, through a bridge stagnant. Be supplied with tendency 11-15V your amplifier. (Power supply it should it provides current 45th). Regulate the 4 variable (C1-C4, until you take the biggest force of expense. The amplifier is ready.
Note: The TK1 needs a wiper of dimensions 5x10cm for trouble free operation. This wiper screw in the TR1 without isolators, after his central screw has electric isolation from remainder pins.

Active Subwhoofer

Active Subwhoofer

DC Protection / Time Delay for Loudspeaker

DC Protection / Time Delay for Loudspeaker

A exceptionally useful circuit for all the final amplifiers, but also in other applications that we needed some time delay and protection DC. The particular circuit combines enough operations, as: [ 1 ] Smooth departure of benefit of AC line of network, with delay 1sec, to the transformers of power supply of amplifier, via the RL1 and the resistance Rx. (see block diagram). [ 2 ] Delay of connection of expenses of final amplifiers, in headphone, in order that noises emanating from the charge - uncharged of capacitors of power supply, they do not pass in them. Simultaneously becomes control of exit of amplifiers for existence of continuous voltage [DC]. If all go well it connects, the amplifiers in loudspeaker. At the duration of operation of amplifiers, exists continuous control, for DC voltage in the exit of amplifiers, unplug him loudspeaker, if is presented problem ph. "opens" some transistor in the final stage and passes the voltage of supply to loudspeaker. [ 3 ] Clue of situation ERROR, optically with the LD3 (can is flash led) and soundly with buzzer (BZ). [ 4 ].
A other operation that exists and with difficulty will find in proportional circuits, is also the existence second relay (RL3), with parallel contacts in the main relay (RL2), connection the loudspeaker in the amplifiers, that it little closes afterwards the RL2. The idea I add one still relay, was supported in the problems that exist, after frequent use of RL2, his contacts are degraded by the electric arcs that are created when it opens and closes relay. Result is a spectrum of frequencies, because the high resistance that is developed in the contacts, the sound of be degraded.
This problem is untied to a large extent, if are added, other contacts at the same time with first, that would close after them, remaining thus clean, one and are not created, on them, differences of potential, so that they are degraded. The circuit can work excellently also in actively loudspeaker one and the circuits of detection DC, afterwards the J2, can make so much all loudspeakers we have. In this case, they will need so much circuits of protection, that actively loudspeaker, we have. In the BLOCK diagram I give a flavour of typical connections, that can become, when the circuit use in stereo amplifier and his supply are taken from main power supply his.
How it works.
The supply of circuit becomes from a AC line in the J1. This voltage can be from a separate transformer 2X12V (the prices of materials that I give it is for 2X12V AC), from existing coil 12V in their M/T of power amplifier or if it cannot become somebody from the two, then from the coils of mainly supply final amplifier, adapting always the prices of resistances R1/2 and R3, proportionally the price of voltage that is supplied the amplifier, according to the law of Ohm and the fall of voltage that we want to achieve (R=V/i). The voltage that it should we have in point A, before the IC2, should is bigger than + 15V 200mA, the IC2 supplies all the relay and led. The remainder circuit is supplied by the R3/D9. When we supply the amplifier with voltage of network (220V AC), charge the C6 via the R4, the price in the entry of IC1a is (H) exit (L) Q1- RL1, is in cutting off. In line with being first the M/T of power supply, intervenes the RX, which ensures smooth connection the M/T in the network, avoiding the burn of fuses, specifically if the force power supply, is big. After 1sec after charge the C6, his negative pole goes to 0V, the entry of IC1A becomes 0V (L), conduct Q1 closes the RL1, short the resistance RX and all the voltage of network is applied in the M/T. Simultaneously turns on LD 1. Via the R5 charge slow the C7 (~5sec), when charge the situation in the pin5 of IC1b become (H), (the other are already (H) from the R23), exit is (L) and the exit of IC1C (H), the Q2 drive the RL2, giving the output of amplifiers in loudspeaker. Simultaneously via the R13 charge the C8 (~2 sec). Hardly charge the C8, conduct the Q3 and close the contacts of RL3, at the same time with those of RL2. The circuit is in complete operation. If we interrupt the line of network all the supply?s fall very fast, with result all relay is cut off, very rapidly cut off, him loudspeakers. If are presented some continuous voltage in entries J2/1 and J2/4, the two circuits of detection DC, then the Q5 or Q6 conduct and lead the entry of IC1b to pin 5 to 0V (L), with result the exit is become (H), the exit of IC1c to be become (L), transistors Q2-3 are cut off and away also the RL2-3 to open, disconnect, him loudspeakers, from the output of amplifiers, until is raised the cause of presence DC.. The same time the exit of IC1D, becomes (H), Q4 conduct, the buzzer [BZ] sounds and turns on the LD3, signaling error. The intensity of sound of BZ, can be regulated from the TR1, but it can it is suppressed if we do not want sound clue of error. The prices of times can change, if are changed capacitors C7-8, with different capacity. Resistances R1-2 if use finally, R3 and R?, should be in some distance from pcb, one and likely hot. The IC2 should enter on heatsink, specifically if the voltage of entry exceeds the +15V. Big attention it should we give in the circuit round resistance RX/CX and the contacts of RL1, because the voltage of network is dangerous (DANGER of ELECTROCUTION). For this reason good it is insulation. What it should we are careful is the quality of all relay, is very good and from known constructor.
R1-2=See text*
D1-4= 1N4007
R3=470R 1W*see text
D5-8= 1N4148
R4-5= 1M D9=12V 1.2W Zener
R6-7= 1K D10-22= 1N4148
R8-14= 15K LD1-2= LED
R9-15= 56K LD3=Flash Led [RED]
R10-16= 56K BZ= BUZZER 12V
R11-17= 10K J1-4= Connectors
R12-13= 39K TR1= 10K Trimmer
R18= 39K RL1-3= 12V 2X2(10A)RELAY
R19= 1K2
R20= 1K
R21-22= 3K9
R23= 22K
R24= 39K
RX= 47R 10W
C1= 220uF 63V
C2-5= 47uF 63V
C3-4=100nF
C6= 1uF 25V
C7= 4.7uF 25V
C8= 470uF 16V
C9-14= 22uF 16V
C10-13= 33uF 63V
CX= 33nF 630V
IC1= 4093 cmos

IC2= 7812T
Q1-4= BD679
Q5-6= BC550C

Loudspeaker Protection with Soft Start

Loudspeaker Protection with Soft Start


This is a small protection circuit from loudspeakers, from DC voltage that likely to exist after some damage in the power amplifier. If a DC voltage is presented in the exit of amplifier, RL1 it interrupts immediately the line of loudspeakers preventing thus to reach in he. Parallel it provides a delay time of 3 seconds from the moment where the power supply will be applied. This delay protects the loudspeakers from undesirable bangs that are observed when open the supply switch. The Leds D 4-5 provide a optical indication for the circuit operation [D4 (green)=OK and D5(red)= delay or presence DC voltage]. The supply of circuit becomes from a symmetrical ?12Volts, which we can take from small independent power supply or from afterwards suitable demotion of main power supply. It will be supposed you make a circuit of protection for each final amplifier that you dispose. Proportional attention it should you show for the quality of RL1 that the contacts of will be supposed to bear the current that passes from he.

Part List
R1=22Kohm
R2-3=390Kohm
R4=470Kohm
R5=1Mohm
R6-7-8-9-10-12=10Kohm
R11=820 ohm
RL1=Relay 12VDc Omron G2R2
C4-5=100uF 25V
C1-2-3=47uF 63V

IC1=TL071
Q1=BC560C
Q2-3-4=BC550C
Q5=BD139
D1-2-3=1N4148
D4=Green 5mm Led
D5=Red 5mm Led

J1=3pin connector with 2.54mm step
J2=2pin connector with 2.54mm step
J3=2pin connector with 3.96mm step

Friday, December 28, 2007

Single Chip 50 Watt / 8 Ohm Power Amplifier

Single Chip 50 Watt / 8 Ohm Power Amplifier
________________________________________

Circuit Description
There are many instances where a simple and reliable power amplifier is needed - rear and centre channel speakers for surround-sound, beefing up the PC speakers, etc.
This project (unlike most of the others) is based almost directly on the "typical application" circuit in the National Semiconductor specification sheet. As it turns out, the typical application circuit is not bad - would I go so far as to say hi-fi in the audiophile sense? Perhaps - with caveats. It has good noise and distortion figures, and is remarkably simple to build if you have the PCB.
26 Sept 2000
From testing the prototype boards, I was a little more critical of everything. The sound quality is excellent! As long as the protection circuitry is never allowed to operate, the performance is exemplary in all respects.
The ESP version of the circuit has connections for a SIM (Sound Impairment Monitor), and if the amp is going to be used anywhere near its limits, I strongly recommend that you use the add-on SIM circuit. I will eventually simplify the "simple" version of the SIM so that it can be used more easily for exactly this purpose.
Figure 1 shows the updated schematic - this is almost the same as in the application note (redrawn), polyester bypass capacitors have been added, and the mute circuit has been disabled (this function would more commonly be applied in the preamp, and is not particularly useful anyway IMHO).

Figure 1 - LM3876T Power Amplifier Circuit Diagram
Voltage gain is 27dB as shown, but this can be changed by using a different value resistor for the feedback path (R3, currently 22k, between pins 3 and 9). The inductor consists of 10 turns of 0.4mm enamelled copper wire, wound around the body of the 10 Ohm resistor. The insulation must be scraped off each end and the wire is soldered to the ends of the resistor.
The 10 Ohm and 2.7 Ohm resistors must be 1 Watt types, and all others should be 1% metal film (as I always recommend). All electrolytic capacitors should be rated at 50V if at all possible, and the 100nF (0.1uF) caps for the supplies should be as close as possible to the IC to prevent oscillation.
The supply voltage should be about +/- 35 Volts at full load, which will let this little guy provide a maximum of 56 Watts (rated minimum output at 25 degrees C). To enable maximum power, it is important to get the lowest possible case to heatsink thermal resistance. This will be achieved by mounting with no insulating mica washer, but be warned that the heatsink will be at the -ve supply voltage and will have to be insulated from the chassis. For more info on reducing thermal resistance, read the article on the design of heatsinks - the same principles can be applied to ICs - even running in parallel. I haven't tried it with this unit, but it is possible by using a low resistance in series with the outputs to balance the load.


Figure 2 - IC Pinouts
Figure 2 shows the pinouts for the LM3876, and it should be noted that the pins on this device are staggered to allow adequate sized PCB tracks to be run to the IC pins. The 3886 has (almost) identical pinouts, and can be used instead if a little more power is required.

If the LM3886 is used, Pin 5 must be connected to the +ve supply - if you have the PCB, a link is necessary to make the connection, as it is not provided on the board.
The PCB for this amp is for a stereo amplifier, is single sided, and supply fuses are located on the PCB. The entire stereo board including four fuses is 115mm x 40mm (i.e. really small).

To reiterate a point I have made elsewhere, never operate this amp without a heatsink (this applies to nearly all amplifiers). It will overheat very quickly, and although the internal protection will shut the amp down to protect it from damage, this is not something you want to test for no good reason.
________________________________________
How Does It Sound?
The sound quality is very good - as I said at the beginning, I would call it audiophile hi-fi - with caveats. Provided the amp is never allowed to go anywhere near clipping it sounds very good indeed. This is the rub - because of the comprehensive overload protection (which I have never liked in any form) this amp provides more and nastier "artefacts" as it clips than a "normal" amplifier.
The protection circuitry is called SPiKe™ by National - this stands for Self Peak instantaneous Temperature (°Ke) (sic) and will protect the amp from almost anything. Although in theory this is a good thing, it's not so good when the protection circuits operate, so make absolutely sure that the amp is only used in applications where clipping will never occur, or is relatively lightly loaded.
This might sound like a tall order, but for rear speakers in a surround system, or to put some serious grunt into those 400W PMPO PC speakers (with the 5W RMS amplifiers - I'm not kidding), this amp is a gem.
It could also be used as a midrange and/or tweeter amp in a tri-amped system - there are a lot of possibilities, so I will leave it to you to come up with more.

200W Audio Amplifier

200W Audio Amplifier

Thursday, December 27, 2007

Quadraphonic Amplifier

Quadraphonic Amplifier


Description:

This is a four channel amplifier ideally suited for use with quadraphonic equipment such as a Sound Blaster Live card. There is no volume control,audio levels being directly controlled from the sound card itself.

circuit:


Parts List:
D1-D4: 1N4001 (4)
C1,C20: 1000u CAP (2)
C2,C11: 47u CAP (2)
C3,C5,C7,C8,C12,C14,C16,C17,C21,C22: 0.1u CAP (10)
C4,C6,C13,C15: 10u CAP (4)
C9,C10,C18,C19: 2200u CAP (4)
R1,R4,R9,R12: 1M RESISTOR (4)
R2,R6,R10,R14: 100k RESISTOR (4)
R3,R5,R11,R13: 1k RESISTOR (4)
R7,R8,R15,R16: 2R7 RESISTOR (4)
IC1: 7812 (1)
IC2,IC3: LM1778N (2)
SPK1,SPK2,SPK3,SPK4: 8R 2 Watt speakers (4)

Notes:
Construction is straight forward and is suitable for Verobaord. Overall gain is controlled by the ratio R14/R13 and R6/R5. Used with small hi-fi speakers the volume was too loud for my room so I reduced R14 and R6 to 33k. The zobel network formed by R7,C7,R8,C8,R15,C16,R16,C17 prevents instability which can happen with long speaker wires. The input impedance is high, 1M and if very long input cables are present could pick up noise. Screened cable should be used, in my case I used 10k resistors between points A & C, B & C, D & F, E & F. This provides a DC path to ground and higher noise immunity. If instability does occur, then you will notice sound distortion and the LM1877N will become hot to touch.

Connections:
The back of a sound blaster live card has color coded 3.5mm stereo jacks. The image below shows a close up of the rear of my Sound Blaster Live card. As well as color coding, each connector has an appropriate marking, for easy connectivity.


The normal output connector is green and the rear speaker connector is black. Creative provide utilities and sound mixer for use with Windows. Under Linux the utility Gamix can be used, which allows independent volume control for all channels.

Allpass network shifts signals 90°

Allpass network shifts signals 90°

Unlike lowpass, bandpass, and other magnitude-altering filters, allpass filters can shift the phase of a signal without affecting its amplitude. For a first-order allpass circuit, the transfer function is
As you sweep the variables from zero (dc) to infinity, the sign of H(s) changes from plus to minus, indicating a change in phase from 0 to 180°. You can realize this transfer function in two wideband transconductance amplifiers (WTAs). The circuitry inside the dashed lines in Fig 1 is one allpass network.

A WTA's transfer function is IOUT8VIN/Z, where 8 is simply an internal constant and Z is an external gain-setting component connecting the WTA's Z+ and Z- pins. The transfer function for voltage amplification is VOUT/VINIOUTxZOUT. Most applications require a resistive Z. But the WTA also accepts an inductor, a capacitor, or any other impedance network for Z.

The allpass circuit combines a resistive-Z WTA (IC1) with a capacitive-Z WTA (IC2). At low frequencies, IC1 dominates the circuit's output because the capacitor's high impedance allows only a low IOUT from IC2. Rising frequencies lowers this impedance, causing the current from IC2 to dominate at high frequencies. Moreover, IC2 inverts, and IC1 does not, producing the desired noninverting unity gain at dc and inverting unity gain at high frequencies.

Communications and signal-processing applications use allpass networks widely. An example is a 90°-phase-shift network, which, with appropriate mixers, produces a single-sideband signal. In Fig 1, the two allpass circuits have corner frequencies that differ by a factor of 7.5. The output RC networks determine these corner frequencies. The result is an output-phase difference that remains close to 90° over a wide frequency range. Measurements show 0.2-dB amplitude variations and a phase difference of 90°±7° from 180 to 740 kHz-a 4:1 range. (DI #1696)

Two wideband transconductance amplifiers (WTAs) form an allpass network (within dashed lines). Combining two such networks produces two outputs having a constant 90° phase shift versus frequency between them.

3 Watt FM Transmitter

3 Watt FM Transmitter

This is the schematic for an FM transmitter with 3 to 3.5 W output power that can be used between 90 and 110 MHz. Although the stability isn't so bad, a PLL can be used on this circuit.

Schematic
This is the schematic of the 3W FM Transmitter

Parts

Part Total Qty. Description Substitutions
R1,R4,R14,R15 4 10K 1/4W Resistor
R2,R3 2 22K 1/4W Resistor
R5,R13 2 3.9K 1/4W Resistor
R6,R11 2 680 Ohm 1/4W Resistor
R7 1 150 Ohm 1/4W Resistor
R8,R12 2 100 Ohm 1/4W Resistor
R9 1 68 Ohm 1/4W Resistor
R10 1 6.8K 1/4W Resistor
C1 1 4.7pF Ceramic Disc Capacitor
C2,C3,C4,C5,C7,
C11,C12 7 100nF Ceramic Disc Capacitor
C6,C9,C10 3 10nF Ceramic Disc Capacitor
C8,C14 2 60pF Trimmer Capacitor
C13 1 82pF Ceramic Disc Capacitor
C15 1 27pF Ceramic Disc Capacitor
C16 1 22pF Ceramic Disc Capacitor
C17 1 10uF 25V Electrolytic Capacitor
C18 1 33pF Ceramic Disc Capacitor
C19 1 18pF Ceramic Disc Capacitor
C20 1 12pF Ceramic Disc Capacitor
C21,C22,C23,C24 4 40pF Trimmer Capacitor
C25 1 5pF Ceramic Disc Capacitor
L1 1 5 WDG, Dia 6 mm, 1 mm CuAg, Space 1 mm
L2,L3,L5,L7,L9 5 6-hole Ferroxcube Wide band HF Choke (5 WDG)
L4,L6,L8 3 1.5 WDG, Dia 6 mm, 1 mm CuAg, Space 1 mm
L10 1 8 WDG, Dia 5 mm, 1 mm CuAg, Space 1 mm
D1 1 BB405 BB102 or equal (most varicaps with C = 2-20
pF [approx.] will do)
Q1 1 2N3866
Q2,Q4 2 2N2219A
Q3 1 BF115
Q5 1 2N3553
U1 1 7810 Regulator
MIC 1 Electret Microphone
MISC 1 PC Board, Wire For Antenna, Heatsinks

Notes

1. The circuit has been tested on a normal RF-testing breadboard (with one side copper). Make some connections between the two sides. Build the transmitter in a RF-proof casing, use good connectors and cable, make a shielding between the different stages, and be aware of all the other RF rules of building.

2. Q1 and Q5 should be cooled with a heat sink. The case-pin of Q4 should be grounded.

3. C24 is for the frequency adjustment. The other trimmers must be adjusted to maximum output power with minimum SWR and input current.

4. Local laws in some states, provinces or countries may prohibit the operation of this transmitter. Check with the local authorities.

Low pass filter - Subwoofer

Low pass filter - Subwoofer

The acoustic spectrum is extended by very low frequencies 20Iz and reaches as the 20000Iz in high frequencies. In the low frequencies is degraded the sense of direction. This reason us leads to the utilization speaker for the attribution of very low frequencies. The manufacture that to you we propose distinguishes these frequencies, in order to him we lead to the corresponding amplifier. The acoustic filters are met in various points in the sound systems. The knownest application they are the filters baxandal for regulating tone low and high frequencies and filters crossover where the acoustic region is separated in subareas, in order to it leads the corresponding loudspeakers. The application that to you we propose is a simple filter of region that limits the acoustic region (20-20000Hz) in the region 20-100Hz.

With the manufacture that to you we propose you can make a active filter in order to you lead a loudspeaker of very low frequencies. With this you will place one bigger speaker between the HIFI speakers of you. In order to you have a complete picture of sound you will need also the corresponding amplifier. In the entry of circuit you will connect the two exits of preamplifier or the exit of line of some preamplifier. The circuit of manufacture allocates a exit in order to is led means of circuit of force subwoofer. If for some reason you do not have space in order to you place the third speaker in space of hearing, then you can select smaller speaker. The output will depend from the type of music that you hear. If in deed you have space, then after you make a filter and remain thanked, you can him recommend in your friends or still make other same for your friends.

Theoretical circuit
In the form it appears the theoretical circuit of filter. In first glance we see three different circuits that are mainly manufactured round two operational amplifiers. This circuits constitute mixed, amplifier with variable aid and a variable filter. The manufacture end needs a circuit of catering with operational tendency of catering equal with ±12. the operational amplifiers that constitute the active elements for this circuits of are double operational type as the TL082 and NE5532. The operational these amplifiers belong in a family provided with transistor of effect of field IFET in their entries. Each member of family allocates in their circuit bipolar transistor and effect of field. This circuits can function in his high tendency, because that they use transistor of high tendency. Also they have high honor of rhythm of elevation (slew rate), low current of polarization for the entries and are influenced little by the temperature. The operational these amplifiers have breadth of area unity gain bandwidth 3MHz. A other important element for their choice is the big reject of noise, when this exists in the line of catering.

The price of reject is bigger than 80dB, their consumption is small, from 11 until 3 mA. They are internally sold in nutshell with eight pins and allocate two operational amplifiers, In the same line in nutshell 14 pins they incorporate four operational, In the trade they are sold with code TL074, TL084 and TL064, In nutshell with eight pins they are sold operational amplifiers TL061 TL071 kajTL081. In the manufacture we used the TL082 that has two operational. First operational from the TL082 it works as amplifier and mixed for the two channels, In his negative entry he exists one small mixed with two resistances. A potentiometer in this rung determines the aid of circuit. In the point this left winger and the right channel of preamplifier they are added means of two resistances. En continuity the operational strengthens signal with aid made dependent from the price that has the potentiometer.

The place of runner is proportional with the aid of circuit. The second operational amplifier is the filter of manufacture. The filter of is acoustic frequency of second class and he is made with the materials that are round the operational amplifier. The filter of is low passage with variable frequency of cutting off. This frequency can be altered and take prices from very low frequency the 30Hz or still exceed 150Hz. The frequency of cutting off of filter depends from the prices that have the elements of circuit. Altering the values of elements we can have frequency of cutting off 150Iz, 130Iz, J00Iz, 7Ïz, 6Íz even 3Íz, this prices they can be achieved with the simple rotation of double potentiometer. The circuit of filter has been made around one operational' that it has completed TL082 that is double operational amplifier. In the exit of filter we will link the plug of expense where is connected the amplifier. In the exit of circuit is presented, the limited as for the breadth of frequencies, signal that we apply in the entry of circuit.

Manufacture Parts

R1 = 39 Kohm R2 = 39 Kohm
R3 = 47 Kohm R4 = 10 Ohm
R5 = 22 Kohm R6 = 4,7 Kohm
R7 = 22 Kohm R8 = 4,7 Kohm
R9 = 10 Ohm R10 = 220 Ohm
C1 = 39 pF C2 = 0.1 uF
C3 = 0.1 uF C4 = 0.2 uF
C5 = 0.4 uF C6 = 0.1 uF
C7 = 0.1 uF IC1 = TL064


In order to you make the manufacture you will need printed that appears in the form. In this you will place the materials according to the following form. The materials are enough also easy can become certain errors. With few attention however you can him avoid. If they are presented difference malfunctions, you check carefully the circuit. The circuit, as we said, is filter and it should they are used materially good precision and quality, particularly for the capacitors. The capacitors of filters will have tolerance 5%. Of course, the manufacture will also work with material of lower quality, the trial of manufacture can become with acoustic signal of generator We apply the generator in the entry of manufacture and we measure with a voltmeter the tendency in the exit of filter. If we alter the potentiometer and are altered the tendency, then all have well.

25W Mosfet audio amplifier

25W Mosfet audio amplifier

-- High Quality simple unit
-- No need for a preamplifier


Circuit diagram:

25 Watt Amplifier

Parts:
R1,R4 = 47K

1/4W Resistors
R2 = 4K7 1/4W Resistors
R3 = 1K5 1/4W Resistors
R5 = 390R 1/4W Resistors
R6 = 470R 1/4W Resistors
R7 = 33K 1/4W Resistors
R8 = 150K 1/4W Resistors
R9 = 15K 1/4W Resistors
R10 = 27R 1/4W Resistors
R11 = 500R

1/2W Trimmer Cermet
R12,R13,R16 = 10R 1/4W Resistors
R14,R15 = 220R 1/4W Resistors
R17 = 8R2 2W Resistor
R18 = R22 4W Resistor (wirewound)

C1 = 470nF 63V Polyester Capacitor
C2 = 330pF 63V Polystyrene Capacitor
C3,C5 = 470?F 63V Electrolytic Capacitors
C4,C6,C8,C11 = 100nF 63V Polyester Capacitors
C7 = 100?F 25V Electrolytic Capacitor
C9 = 10pF 63V Polystyrene Capacitor
C10 = 1?F 63V Polyester Capacitor

Q1-Q5 = BC560C 45V100mA Low noise High gain PNP Transistors
Q6 = BD140 80V 1.5A PNP Transistor
Q7 = BD139 80V 1.5A NPN Transistor
Q8 = IRF532 100V 12A N-Channel Hexfet Transistor
Q9 = IRF9532 100V 10A P-Channel Hexfet Transistor

Power supply circuit diagram:
Power supply


Parts:
R1 = 3K3 1/2W Resistor

C1 = 10nF 1000V Polyester Capacitor
C2,C3 = 4700?F 50V Electrolytic Capacitors
C4,C5 = 100nF 63V Polyester Capacitors

D1 200V 8A Diode bridge
D2 5mm. Red LED
F1,F2 3.15A Fuses with sockets

T1 220V Primary, 25 + 25V Secondary 120VA Mains transformer
PL1 Male Mains plug
SW1 SPST Mains switch



Notes:
*Can be directly connected to CD players, tuners and tape recorders. Simply add a 10K Log potentiometer (dual gang for stereo) and a switch to cope with the various sources you need.
*Q6 & Q7 must have a small U-shaped heatsink.
*Q8 & Q9 must be mounted on heatsink.
*Adjust R11 to set quiescent current at 100mA (best measured with an Avo-meter in series with Q8 Drain) with no input signal.
*A correct grounding is very important to eliminate hum and ground loops. Connect in the same point the ground sides of R1, R4, R9, C3 to C8. Connect C11 at output ground. Then connect separately the input and output grounds at power supply ground.

Technical data:
Output power: well in excess of 25Watt RMS @ 8 Ohm (1KHz sinewave)
Sensitivity: 200mV input for 25W output
Frequency response: 30Hz to 20KHz -1dB
Total harmonic distortion @ 1KHz: 0.1W 0.014% 1W 0.006% 10W 0.006% 20W 0.007% 25W 0.01%
Total harmonic distortion @10KHz: 0.1W 0.024% 1W 0.016% 10W 0.02% 20W 0.045% 25W 0.07%
Unconditionally stable on capacitive loads

FET Audio Mixer

FET Audio Mixer

This simple circuit mixes two or more channels into one channel (eg. stereo into mono). The circuit can mix as many or as few channels as you like and consumes very little power. The mixer is shown with two inputs, but you can add as many as you want by just duplicating the "sections" which are clearly visible on the schematic.

Schematic
Parts

Part Total Qty. Description

R1, R3 2 10K Pot
R2, R4 2 100K 1/4 W Resistor

Wednesday, December 26, 2007

Sound Level Meter

Sound Level Meter

This nifty sound level meter is a perfect one chip replacement for the standard analog meters. It is completely solid state and will never wear out. The whole circuit is based on the LM3915 audio level IC and uses only a few external components.

Schematic

Parts

Part Total Qty. Description

C1 1 2.2uF 25V Electrolytic Capacitor
R1 1 1K 1/4W Resistor
D1 1 1N4002 Silicon Diode
LED1-LED10 10 Standard LED or LED Array
U1 1 LM3915 Audio Level IC
MISC 1 Board, Wire, Socket For U1

Notes
1. V+ can be anywhere from 3V to 20V.
2. The input is designed for standard audio line voltage (1V P-P) and has a maximum input voltage of 1.3V.
3. Pin 9 can be disconnected from ground to make the circuit use a moving dot display instead of a bar graph display.

Amplifier of acoustic frequencies with preamplifier

Amplifier of acoustic frequencies with preamplifier



TECHNICAL CHARACTERISTICS:
Tendency of catering: 15V
Force of expense: 4,2Wrms in the 4W

Minimal signal of entry: 94mVp-p with preamplifier, 0,65Vp-p without the preamplifier.

Materially:
R1 2,2KW
R2 330KW
R3 4,7KW logarithmic potentiometer

Bass-treble tone control circuit

Bass-treble tone control circuit

The LM1036 is a DC controlled tone (bass/treble), volume and balance circuit for stereo applications in car radio, TV and audio systems. An additional control input allows loudness compensation to be simply effected. Four control inputs provide control of the bass, treble, balance and volume functions through application of DC voltages from a remote control system or, alternatively, from four potentiometers which may be biased from a zener regulated supply provided on the circuit. Each tone response is defined by a single capacitor chosen to give the desired characteristic.

Features:
Wide supply voltage range, 9V to 16V
Large volume control range, 75 dB typical
Tone control, ±15 dB typical
Channel separation, 75 dB typical
Low distortion, 0.06% typical for an input level of 0.3 Vrms
High signal to noise, 80 dB typical for an input level of 0.3 Vrms
Few external components required

Note: Vcc can be anything between 9V to 16V and the output capacitors are
10uF/25V electrolytic.

Motorola Hi-Fi power amplifier

Motorola Hi-Fi power amplifier

This is a very simple, low cost, Hi-Fi quality power amplifier. You can build it 5 ways, like it?s shown in the table (from 20 W to 80 W RMS).


Some comments:
- The first thing that you must do, is to measure the end transistors (T3 and T4) amplifying coefficient, the hfe or ?. If their disagreement is bigger than 30 %, the amplifier would not give a clear sound. I used MJ3001 and MJ2501 transistors, and this disagreement was around 5%.
- Before the first ?turning on? you must short circuit the inputs of the amp, and put a mA-meter on the output, than turn the amplifier on, and tune the R13 pot, to decrease the DC current on the output, to some uA-s, or in a lucky situation to zero. I was able to decrease it to 10 uA.

2N3055 Power Amplifier

2N3055 Power Amplifier

Simple and low cost. The optimal supply voltage is around 50V, but this amp work from 30 to 60V. The maximal input voltage is around 0.8 - 1V. As you can see, in this design the components have a big tolerance, so you can build it almost of the components, which you find at home. The and transistors can be any NPN type power transistor, but do not use Darlington types... The output power is around 60W.

Some comments:
- capacitor C1 regulates the low frequencies (bass), as the capacitance grows, the low frequencies are getting louder.
- capacitor C2 regulates the higher frequencies (treble), as the capacitance grows, the higher frequencies are getting quiter.
- this is a class B amplifier, this means, that a current must flow through the end transistors, even if there is no signal on the input. This current can be regulated with the 500? trimmer resistor. As this current increases, the sound of the amplifier gets better, but the end transistors are more heating. But if this current decreases, the transistors are not heating so much, but the sound gets worse...

Digital Volume Controller

Digital Volume Controller


Circuit of a digital volume control using six discrete ICs, including a 5V regulator, is presented. IC1 (555) is configured to function as astable flip-flop. Its frequency or period may be adjusted by proper choice of resistors R44, R45 and capacitor C6 combination. Here it is for 0.3 second period.

IC2 is a presentable up/down counter. In this circuit up-mode is used for increasing and down-mode is used for decreasing the volume. IC3 and IC4 are 16-channel analogue multiplexers which function as analogue switches. Here IC3 is used as level indicator while IC4 is used as a potentiometer.

Soon after the power is switched on, switch S1 is to be pressed to reset the whole system. When switch S2 is pressed, IC2 counts up the number of pulses and the result is available in the form of BCD output. IC6 is used as an interface between TTL and CMOS ICs. The BCD output controls the address input lines of IC2 and IC3, and selects/switches one, out of sixteen channels, by turning on the appropriate analogue switch.
In the circuit, IC4 is used as a potentiometer by connecting 15 resistors (R9 through R23) between each of its 16 input pins and a resistor/capacitor combination of C2, C3 and R7 at its output. The values of resistors R9 through R23 can, of course, be selected as desired. Here the resistors have been selected for a logarithmic scale.

Switch S2 is used for increasing and switch S3 is used for decreasing the volume. Similarly, switches S4 and S5 are provided for second channel (right channel) volume control. Also, pin 14 of IC2 can be connected to IC 74193 pin 14 (clear input) of the right channel volume control circuit. The volume control circuit of right channel will be identical to that of the left channel circuit (shown here) except that IC1, IC5 and push-to-on switches are not to be duplicated.
A 1?F electrolytic capacitor (C4) is used to prevent switching noise. Resistors R8 and R6 are used to fix the quiescent operating voltage level at half the supply voltage for avoiding distortion of the audio signal from the preamplifier. Capacitors C2, C3 and resistor R7 are provided for proper filtering of the audio and blocking DC component. An exact logarithmic scale of resistors R9 through R23 produces a pleasing and smooth control.

Thursday, November 29, 2007

1.5 Hour Lamp Fader (Sunset Lamp)


1.5 Hour Lamp Fader (Sunset Lamp)

Similar to the one above, the sunset lamp comes on at full brightness and then slowly fades out over 1.5 hours time and stays off until power is recycled.

Automatic 12 Volt Lamp Fader


Automatic 12 Volt Lamp Fader

This circuit is similar to the "Fading Red Eyes" circuit (in the LED section) used to fade a pair of red LEDs. In this version, the lamps are faded by varying the duty cycle so that higher power incandescent lamps can be used without much power loss. The switching waveform is generated by comparing two linear ramps of different frequencies. The higher frequency ramp waveform (about 75 Hz.) is produced from one section of the LM324 quad op-amp wired as a Schmitt trigger oscillator. The lower frequency ramp controls the fading rate and is generated from the upper two op-amps similar to the "fading eyes" circuit. The two ramp waveforms at pins 9 and 1 are compared by the 4th op-amp which generates a varying duty cycle rectangular waveform to drive the output transistor. A second transistor is used to invert the waveform so that one group of lamps will fade as the other group brightens. The 2N3053 will handle up to 500 milliamps so you could connect 12 strings of 4 LEDs each (48 LEDs) with a 220 ohm resistor in series with each group of 4 LEDs. This would total about 250 milliamps. Or you can use three 4 volt, 200 mA Xmas tree bulbs in series. For higher power 12 volt automobile lamps, the transistor will need to be replaced with a MOSFET that can handle several amps of current. See the drawing below the schematic for possible hookups.

Other possible hookups


12 Volt Lamp Dimmer


12 Volt Lamp Dimmer

Here is a 12 volt / 2 amp lamp dimmer that can be used to dim a standard 25 watt automobile brake or backup bulb by controlling the duty cycle of a astable 555 timer oscillator. When the wiper of the potentiometer is at the uppermost position, the capacitor will charge quickly through both 1K resistors and the diode, producing a short positive interval and long negative interval which dims the lamp to near darkness. When the potentiometer wiper is at the lowermost position, the capacitor will charge through both 1K resistors and the 50K potentiometer and discharge through the lower 1K resistor, producing a long positive interval and short negative interval which brightens the lamp to near full intensity. The duty cycle of the 200 Hz square wave can be varied from approximately 5% to 95%. The two circuits below illustrate connecting the lamp to either the positive or negative side of the supply.

FM Beacon Broadcast Transmitter (88-108 MHz)


FM Beacon Broadcast Transmitter (88-108 MHz)

This circuit will transmit a continuous audio tone on the FM broadcast band (88-108 MHz) which could used for remote control or security purposes. Circuit draws about 30 mA from a 6-9 volt battery and can be received to about 100 yards. A 555 timer is used to produce the tone (about 600 Hz) which frequency modulates a Hartley oscillator. A second JFET transistor buffer stage is used to isolate the oscillator from the antenna so that the antenna position and length has less effect on the frequency. Fine frequency adjustment can be made by adjusting the 200 ohm resistor in series with the battery. Oscillator frequency is set by a 5 turn tapped inductor and 13 pF capacitor. The inductor was wound around a #8 X 32 bolt (about 3/16 diameter) and then removed by unscrewing the bolt. The inductor was then streached to about a 3/8 inch length and tapped near the center. The oscillator frequency should come out somewhere near the center of the band (98 MHz) and can be shifted higher or lower by slightly expanding or compressing the inductor. A small signal diode (1N914 or 1N4148) is used as a varactor diode so that the total capacity in parallel with the inductor varies slightly at the audio rate thus causing the oscillator frequency to change at the audio rate (600 Hz). The ramping waveform at pins 2 and 6 of the timer is applied to the reversed biased diode through a large (1 Meg) resistor so that the capacitance of the diode changes as the ramping voltage changes thus altering the frequency of the tank circuit. Alternately, an audio signal could be applied to the 1 Meg resistor to modulate the oscillator but it may require an additional pullup resistor to reverse bias the diode. The N channel JFET transistors used should be high frequency VHF or UHF types (Radio Shack #276-2062 MPF102) or similar.

Micro Power AM Broadcast Transmitter

Micro Power AM Broadcast Transmitter

In this circuit, a 74HC14 hex Schmitt trigger inverter is used as a square wave oscillator to drive a small signal transistor in a class C amplifier configuration. The oscillator frequency can be either fixed by a crystal or made adjustable (VFO) with a capacitor/resistor combination. A 100pF capacitor is used in place of the crystal for VFO operation. Amplitude modulation is accomplished with a second transistor that controls the DC voltage to the output stage. The modulator stage is biased so that half the supply voltage or 6 volts is applied to the output stage with no modulation. The output stage is tuned and matched to the antenna with a standard variable 30-365 pF capacitor. Approximately 20 milliamps of current will flow in the antenna lead (at frequencies near the top of the band) when the output stage is optimally tuned to the oscillator frequency. A small 'grain of wheat' lamp is used to indicate antenna current and optimum settings. The 140 uH inductor was made using a 2 inch length of 7/8 inch (OD) PVC pipe wound with 120 turns of #28 copper wire. Best performance is obtained near the high end of the broadcast band (1.6 MHz) since the antenna length is only a very small fraction of a wavelength. Input power to the amplifier is less than 100 milliwatts and antenna length is 3 meters or less which complies with FCC rules. Output power is somewhere in the 40 microwatt range and the signal can be heard approximately 80 feet. Radiated power output can be approximated by working out the antenna radiation resistance and multiplying by the antenna current squared. The radiation resistance for a dipole antenna less than 1/4 wavelength is

R = 80*[(pi)^2]*[(Length/wavelength)^2]*(a factor depending on the form of the current distribution) The factor depending on the current distribution turns out to be [(average current along the rod)/(feed current)]^2 for short rods, which is 1/4 for a linearly-tapered current distribution falling to zero at the ends. Even if the rods are capped with plates, this factor cannot be larger than 1. Substituting values for a 9.8 foot dipole at a frequency of 1.6 MHz we get R= 790*.000354*.25 = .07 Ohms. And the resistance will be only half as much for a monopole or 0.035 Ohms. Radiated power at 20 milliamps works out to about I^2 * R = 14 microwatts.

Wednesday, November 28, 2007

Parallel Port Relay Interface

Parallel Port Relay Interface

Below are three examples of controlling a relay from the PC's parallel printer port (LPT1 or LPT2). Figure A shows a solid state relay controlled by one of the parallel port data lines (D0-D7) using a 300 ohm resistor and 5 volt power source. The solid state relay will energize when a "0" is written to the data line. Figure B and C show mechanical relays controlled by two transistors. The relay in figure B is energized when a "1" is written to the data line and the relay in figure C is energized by writing a "0" to the line. In each of the three circuits, a common connection is made from the negative side of the power supply to one of the port ground pins (18-25).

There are three possible base addresses for the parallel port You may need to try all three base addresses to determine the correct address for the port you are using but LPT1 is usually at Hex 0378. The QBasic "OUT" command can be used to send data to the port. OUT, &H0378,0 sets D0-D7 low and OUT, &H378,255 sets D0-D7 high. The parallel port also provides four control lines (C0,C1,C2,C3) that can be set high or low by writing data to the base address+2 so if the base address is Hex 0378 then the address of the control latch would be Hex 037A. Note that three of the control bits are inverted so writing a "0" to the control latch will set C0,C1,C3 high and C2 low.

Simple Op-Amp Radio


Simple Op-Amp Radio

This is basically a crystal radio with an audio amplifier which is fairly sensitive and receives several strong stations in the Los Angeles area with a minimal 15 foot antenna. Longer antennas will provide a stronger signal but the selectivity will be worse and strong stations may be heard in the background of weaker ones. Using a long wire antenna, the selectivity can be improved by connecting it to one of the taps on the coil instead of the junction of the capacitor and coil. Some connection to ground is required but I found that standing outside on a concrete slab and just allowing the long headphone leads to lay on the concrete was sufficient to listen to the local news station (KNX 1070). The inductor was wound with 200 turns of #28 enameled copper wire on a 7/8 diameter, 4 inch length of PVC pipe, which yields about 220 uH. The inductor was wound with taps every 20 turns so the diode and antenna connections could be selected for best results which turned out to be 60 turns from the antenna end for the diode. The diode should be a germanium (1N34A type) for best results, but silicon diodes will also work if the signal is strong enough. The carrier frequency is removed from the rectified signal at the cathode of the diode by the 300 pF cap and the audio frequency is passed by the 0.1uF capacitor to the non-inverting input of the first op-amp which functions as a high impedance buffer stage. The second op-amp stage increases the voltage level about 50 times and is DC coupled to the first through the 10K resistor. If the pairs of 100K and 1 Meg resistors are not close in value (1%) you may need to either use closer matched values or add a capacitor in series with the 10K resistor to keep the DC voltage at the transistor emitter between 3 and 6 volts. Another approach would be to reduce the overall gain with a smaller feedback resistor (470K). High impedance headphones will probably work best, but walkman stereo type headphones will also work. Circuit draws about 10 mA from a 9 volt source. Germanium diodes (1N34A) types are available from Radio Shack, #276-1123.

Thermostat for 1KW Space Heater (SCR controlled)


Thermostat for 1KW Space Heater (SCR controlled)

Below is a thermostat circuit I recently built to control a 1300 watt space heater. The heater element (not shown) is connected in series with two back to back 16 amp SCRs (not shown) which are controlled with a small pulse transformer. The pulse transformer has 3 identical windings, two of which are used to supply trigger pulses to the SCRs, and the third winding is connected to a PNP transistor pair that alternately supply pulses to the transformer at the beginning of each AC half cycle. The trigger pulses are applied to both SCRs near the beginning of each AC half cycle but only one conducts depending on the AC polarity.
DC power for the circuit is shown in the lower left section of the drawing and uses a 1.25uF, 400 volt non-polarized capacitor to obtain about 50mA of current from the AC line. The current is rectified by 2 diodes and used to charge a couple larger low voltage capacitors (3300uF) which provide about 6 volts DC for the circuit. The DC voltage is regulated by the 6.2 volt zener and the 150 ohm resistor in series with the line limits the surge current when power is first applied.

The lower comparator (output at pin 13) serves as a zero crossing detector and produces a 60 Hz square wave in phase with the AC line. The phase is shifted slightly by the 0.33 uF, 220K and 1K network so that the SCR trigger pulse arrives when the line voltage is a few volts above or below zero. The SCRs will not trigger at exactly zero since there will be no voltage to maintain conduction.

The upper two comparators operate in same manner as described in the "Electronic thermostat and relay" circuit. A low level at pin 2 is produced when the temperature is above the desired level and inhibits the square wave at pin 13 and prevents triggering of the SCRs. When the temperature drops below the desired level, pin 2 will move to an open circuit condition allowing the square wave at pin 13 to trigger the SCRs.

The comparator near the center of the drawing (pins 8,9,14) is used to allow the heater to be manually run for a few minutes and automatically shut off. A momentary toggle switch (shown connected to a 51 ohm resistor) is used to discharge the 1000uF capacitor so that pin 2 of the upper comparator moves to a open circuit state allowing the 60 Hz square wave to trigger the SCRs and power the heater. When the capacitor reaches about 4 volts the circuit returns to normal operation where the thermistor controls the operation. The momentary switch can also be toggled so that the capacitor charges above 4 volts and shuts off the heater if the temperature is above the setting of the pot.